199 research outputs found

    X-rays across the galaxy population - III. The incidence of AGN as a function of star formation rate

    Full text link
    We map the co-eval growth of galaxies and their central supermassive black holes in detail by measuring the incidence of Active Galactic Nuclei (AGN) in galaxies as a function of star formation rate (SFR) and redshift (to z~4). We combine large galaxy samples with deep Chandra X-ray imaging to measure the probability distribution of specific black hole accretion rates (LX relative to stellar mass) and derive robust AGN fractions and average specific accretion rates. First, we consider galaxies along the main sequence of star formation. We find a linear correlation between the average SFR and both the AGN fraction and average specific accretion rate across a wide range in stellar mass (M∗∼108.5−11.5M⊙M_* \sim 10^{8.5-11.5}M_\odot) and to at least z~2.5, indicating that AGN in main-sequence galaxies are driven by the stochastic accretion of cold gas. We also consider quiescent galaxies and find significantly higher AGN fractions than predicted, given their low SFRs, indicating that AGN in quiescent galaxies are fuelled by additional mechanisms (e.g. stellar winds). Next, we bin galaxies according to their SFRs relative to the main sequence. We find that the AGN fraction is significantly elevated for galaxies that are still star-forming but with SFRs below the main sequence, indicating further triggering mechanisms enhance AGN activity within these sub-main-sequence galaxies. We also find that the incidence of high-accretion-rate AGN is enhanced in starburst galaxies and evolves more mildly with redshift than within the rest of the galaxy population, suggesting mergers play a role in driving AGN activity in such high-SFR galaxies.Comment: 19 pages, 15 figures. This is a pre-copyedited, author-produced version of an article accepted for publication in MNRAS following peer revie

    The AGN-galaxy-halo connection::The distribution of AGN host halo masses to z=2.5

    Get PDF
    It is widely reported, based on clustering measurements of observed active galactic nuclei (AGN) samples, that AGN reside in similar mass host dark matter halos across the bulk of cosmic time, with log M/M⊙M/M_\odot~12.5-13.0 to z~2.5. We show that this is due in part to the AGN fraction in galaxies rising with increasing stellar mass, combined with AGN observational selection effects that exacerbate this trend. Here, we use AGN specific accretion rate distribution functions determined as a function of stellar mass and redshift for star-forming and quiescent galaxies separately, combined with the latest galaxy-halo connection models, to determine the parent and sub-halo mass distribution function of AGN to various observational limits. We find that while the median (sub-)halo mass of AGN, ≈1012M⊙\approx10^{12}M_\odot, is fairly constant with luminosity, specific accretion rate, and redshift, the full halo mass distribution function is broad, spanning several orders of magnitude. We show that widely used methods to infer a typical dark matter halo mass based on an observed AGN clustering amplitude can result in biased, systematically high host halo masses. While the AGN satellite fraction rises with increasing parent halo mass, we find that the central galaxy is often not an AGN. Our results elucidate the physical causes for the apparent uniformity of AGN host halos across cosmic time and underscore the importance of accounting for AGN selection biases when interpreting observational AGN clustering results. We further show that AGN clustering is most easily interpreted in terms of the relative bias to galaxy samples, not from absolute bias measurements alone.Comment: 19 pages, 20 figures, accepted for publication in MNRAS. Updated to show median halo masses following referee's helpful comment

    AGN accretion and black hole growth across compact and extended galaxy evolution phases

    Get PDF
    The extent of black hole growth during different galaxy evolution phases and the connection between galaxy compactness and AGN activity remain poorly understood. We use Hubble Space Telescope imaging of the CANDELS fields to identify star-forming and quiescent galaxies at z=0.5-3 in both compact and extended phases and use Chandra X-ray imaging to measure the distribution of AGN accretion rates and track black hole growth within these galaxies. Accounting for the impact of AGN light changes ~20% of the X-ray sources from compact to extended galaxy classifications. We find that ~10-25% of compact star-forming galaxies host an AGN, a mild enhancement (by a factor ~2) compared to extended star-forming galaxies or compact quiescent galaxies of equivalent stellar mass and redshift. However, AGN are not ubiquitous in compact star-forming galaxies and this is not the evolutionary phase, given its relatively short timescale, where the bulk of black hole mass growth takes place. Conversely, we measure the highest AGN fractions (~10-30%) within the relatively rare population of extended quiescent galaxies. For massive galaxies that quench at early cosmic epochs, substantial black hole growth in this extended phase is crucial to produce the elevated black hole mass-to-galaxy stellar mass scaling relation observed for quiescent galaxies at z~0. We also show that AGN fraction increases with compactness in star-forming galaxies and decreases in quiescent galaxies within both the compact and extended sub-populations, demonstrating that AGN activity depends closely on the structural properties of galaxies.Comment: 29 pages, 18 figures, submitted to MNRAS. Primary results are shown in Fig 7 and summarised by Fig 12. See Fig 16 and 17 for key interpretation/conclusion

    PRIMUS: The relationship between Star formation and AGN accretion

    Full text link
    We study the evidence for a connection between active galactic nuclei (AGN) fueling and star formation by investigating the relationship between the X-ray luminosities of AGN and the star formation rates (SFRs) of their host galaxies. We identify a sample of 309 AGN with 1041<LX<104410^{41}<L_\mathrm{X}<10^{44} erg s−1^{-1} at 0.2<z<1.20.2 < z < 1.2 in the PRIMUS redshift survey. We find AGN in galaxies with a wide range of SFR at a given LXL_X. We do not find a significant correlation between SFR and the observed instantaneous LXL_X for star forming AGN host galaxies. However, there is a weak but significant correlation between the mean LXL_\mathrm{X} and SFR of detected AGN in star forming galaxies, which likely reflects that LXL_\mathrm{X} varies on shorter timescales than SFR. We find no correlation between stellar mass and LXL_\mathrm{X} within the AGN population. Within both populations of star forming and quiescent galaxies, we find a similar power-law distribution in the probability of hosting an AGN as a function of specific accretion rate. Furthermore, at a given stellar mass, we find a star forming galaxy ∼2−3\sim2-3 more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation. These results indicate that there is an underlying connection between star formation and the presence of AGN, but AGN are often hosted by quiescent galaxies

    Obscuration-dependent evolution of Active Galactic Nuclei

    Get PDF
    We aim to constrain the evolution of AGN as a function of obscuration using an X-ray selected sample of ∼2000\sim2000 AGN from a multi-tiered survey including the CDFS, AEGIS-XD, COSMOS and XMM-XXL fields. The spectra of individual X-ray sources are analysed using a Bayesian methodology with a physically realistic model to infer the posterior distribution of the hydrogen column density and intrinsic X-ray luminosity. We develop a novel non-parametric method which allows us to robustly infer the distribution of the AGN population in X-ray luminosity, redshift and obscuring column density, relying only on minimal smoothness assumptions. Our analysis properly incorporates uncertainties from low count spectra, photometric redshift measurements, association incompleteness and the limited sample size. We find that obscured AGN with NH>1022 cm−2N_{H}>{\rm 10^{22}\, cm^{-2}} account for 77−5+4%{77}^{+4}_{-5}\% of the number density and luminosity density of the accretion SMBH population with LX>1043 erg/sL_{{\rm X}}>10^{43}\text{ erg/s}, averaged over cosmic time. Compton-thick AGN account for approximately half the number and luminosity density of the obscured population, and 38−7+8%{38}^{+8}_{-7}\% of the total. We also find evidence that the evolution is obscuration-dependent, with the strongest evolution around NH≈1023 cm−2N_{H}\thickapprox10^{23}\text{ cm}^{-2}. We highlight this by measuring the obscured fraction in Compton-thin AGN, which increases towards z∼3z\sim3, where it is 25%25\% higher than the local value. In contrast the fraction of Compton-thick AGN is consistent with being constant at ≈35%\approx35\%, independent of redshift and accretion luminosity. We discuss our findings in the context of existing models and conclude that the observed evolution is to first order a side-effect of anti-hierarchical growth.Comment: Published in Ap

    Higher prevalence of X-ray selected AGN in intermediate age galaxies up to z~1

    Full text link
    We analyse the stellar populations in the host galaxies of 53 X-ray selected optically dull active galactic nuclei (AGN) at 0.34<z<1.07 with ultra-deep (m=26.5) optical medium-band (R~50) photometry from the Survey for High-z Absorption Red and Dead Sources (SHARDS). The spectral resolution of SHARDS allows us to consistently measure the strength of the 4000 AA break, Dn(4000), a reliable age indicator for stellar populations. We confirm that most X-ray selected moderate-luminosity AGN (L_X<10^44 erg/s) are hosted by massive galaxies (typically M*>10^10.5 M_sun) and that the observed fraction of galaxies hosting an AGN increases with the stellar mass. A careful selection of random control samples of inactive galaxies allows us to remove the stellar mass and redshift dependencies of the AGN fraction to explore trends with several stellar age indicators. We find no significant differences in the distribution of the rest-frame U-V colour for AGN hosts and inactive galaxies, in agreement with previous results. However, we find significantly shallower 4000 AA breaks in AGN hosts, indicative of younger stellar populations. With the help of a model-independent determination of the extinction, we obtain extinction-corrected U-V colours and light-weighted average stellar ages. We find that AGN hosts have younger stellar populations and higher extinction compared to inactive galaxies with the same stellar mass and at the same redshift. We find a highly significant excess of AGN hosts with Dn(4000)~1.4 and light weighted average stellar ages of 300-500 Myr, as well as a deficit of AGN in intrinsic red galaxies. We interpret failure in recognising these trends in previous studies as a consequence of the balancing effect in observed colours of the age-extinction degeneracy.Comment: Accepted for publication in MNRAS, 12 pages, 8 figures, 1 tabl

    X-ray Surface Brightness Profiles of Active Galactic Nuclei in the Extended Groth Strip: Implications for AGN Feedback

    Full text link
    Using data from the All Wavelength Extended Groth Strip International Survey (AEGIS) we statistically detect the extended X-ray emission in the interstellar medium (ISM)/intra-cluster medium (ICM) in both active and normal galaxies at 0.3 <= z <= 1.3. For both active galactic nuclei (AGN) host galaxy and normal galaxy samples that are matched in restframe color, luminosity, and redshift distribution, we tentatively detect excess X-ray emission at scales of 1--10 arcsec at a few sigma significance in the surface brightness profiles. The exact significance of this detection is sensitive to the true characterization of Chandra's point spread function. The observed excess in the surface brightness profiles is suggestive of lower extended emission in AGN hosts compared to normal galaxies. This is qualitatively similar to theoretical predictions of the X-ray surface brightness profile from AGN feedback models, where feedback from AGN is likely to evacuate the gas from the center of the galaxy/cluster. We propose that AGN that are intrinsically under-luminous in X-rays, but have equivalent bolometric luminosities to our sources will be the ideal sample to study more robustly the effect of AGN feedback on diffuse ISM/ICM gas.Comment: Accepted in PAS
    • …
    corecore